Midterm Exam Practise Paper

1 Solve the inequality 2 - 3x < |x - 3|.

1	EITHER:	State or imply non-modular inequality $(2 - 3x)^2 < (x - 3)^2$, or corresponding equation and make a reasonable solution attempt at a 3-term quadratic	on, M1
		Obtain critical value $x = -\frac{1}{2}$	A1
		Obtain $x > -\frac{1}{2}$	A1
		Fully justify $x > -\frac{1}{2}$ as only answer	A1
	<i>OR</i> 1:	State the relevant critical linear equation, i.e. $2 - 3x = 3 - x$	B1
		Obtain critical value $x = -\frac{1}{2}$	B1
		Obtain $x > -\frac{1}{2}$	B1
		Fully justify $x > -\frac{1}{2}$ as only answer	B1
	<i>OR</i> 2:	Obtain the critical value $x = -\frac{1}{2}$ by inspection, or by solving a linear inequality	B2
		Obtain $x > -\frac{1}{2}$	B1
		Fully justify $x > -\frac{1}{-}$ as only answer	B1

2 The polynomial $2x^3 + ax^2 - 4$ is denoted by p(x). It is given that (x - 2) is a factor of p(x).

[2]
[2]
[2]

2 (i)	Substitute 2 for x and equate to zero, or divide by $x - 2$ and equate remainder		
	to zero	M1	
	Obtain answer $a = -3$	A1	2
(ii)	Attempt to find quadratic factor by division or inspection	M1	
• •	State quadratic factor $2x^2 + x + 2$	A1	2
	[The M1 is earned if division reaches a partial quotient of $2x^2 + kx$, or if inspection has an unknown factor of $2x^2 + bx + c$ and an equation in <i>b</i> and/or <i>c</i> , or if two coefficients with the correct moduli are stated without working.]		
(iii)	State answer $x > 2$ (and nothing else)	B1*	
	Make a correct justification e.g. $2x^2 + x + 2$ (has no zeros and) is always positive	B1(dep*)	2
	[SR: The answer $x \ge 2$ gets B0, but in this case allow the second B mark if the remaining work is correct.]		

3 When $(1+2x)(1+ax)^{\frac{2}{3}}$, where *a* is a constant, is expanded in ascending powers of *x*, the coefficient of the term in *x* is zero.

(i) Find the value of *a*.

(ii) When *a* has this value, find the term in x^3 in the expansion of $(1 + 2x)(1 + ax)^{\frac{2}{3}}$, simplifying the coefficient. [4]

[3]

3	(i)	State correct first two terms of the expansion of $(1 + ax)^{\frac{2}{3}}$, i.e. $1 + \frac{2}{3}ax$	B1	
		Form an expression for the coefficient of x in the expansion of $(1+2x)(1+a)$ and equate it to zero Obtain $a = -3$	$ \begin{array}{c} x \\ x \\ 3 \\ M1 \\ A1 \end{array} $	3
	(ii)	Obtain correct unsimplified terms in x^2 and x^3 in the expansion of $(1-3x)^{\frac{2}{3}}$		
		or $(1 + ax)^{\frac{2}{3}}$	$B1\sqrt{+}B1\sqrt{-}$	
		Carry out multiplication by $1 + 2x$ obtaining two terms in x^3	M1	
		Obtain final answer $-\frac{10}{3}x^3$, or equivalent	A1	4
		[Symbolic binomial coefficients, e.g. $\begin{pmatrix} \frac{2}{3} \\ 1 \end{pmatrix}$, are not acceptable for the B mark	s in (i) or (ii)]	
4	(i)	Express $\frac{2-x+8x^2}{(1-x)(1+2x)(2+x)}$ in partial fractions.		[5]
	G	i) Hence obtain the expansion of $2 - x + 8x^2$ in according powers of x	up to and inclu	dina
	(I	Hence obtain the expansion of $\frac{1}{(1-x)(1+2x)(2+x)}$ in ascending powers of x	, up to and meru	unig
		the term in x^2 .		[5]
4	(i) S	State or imply the form $\frac{A}{1-r} + \frac{B}{1+2r} + \frac{C}{2+r}$	B1	
	ι	Use any relevant method to determine a constant	M1	
	C	Dbtain A = 1, B = 2 and C = -4	A1 + A1 + A1	[5]
	(ii) (Use correct method to obtain the first two terms of the expansion of $(1-x)^{-1}$, $(1+2x)^{-1}$, $(2+x)^{-1}$	$(-x)^{-1}$,	
	0	$rr(1+\frac{1}{2}x)^{-1}$	M1	
	(Dbtain complete unsimplified expansions up to x^2 of each partial fraction A1v	$+ A1\sqrt{+}A1\sqrt{-}$	
	C	Combine expansions and obtain answer $1 - 2x + \frac{17}{2}x^2$	A1	[5]
		2		[5]
	[Binomial coefficients such as $\begin{pmatrix} -1 \\ 2 \end{pmatrix}$ are not sufficient for the M1. The f.t. is on A, B, C.]		[3]
	[Binomial coefficients such as $\binom{-1}{2}$ are not sufficient for the M1. The f.t. is on <i>A</i> , <i>B</i> , <i>C</i> .] $2 - x + 8x^2 1 - x^{-1} 1 + 2x^{-1} 2 + x^{-1}$		[3]
	[Binomial coefficients such as $\binom{-1}{2}$ are not sufficient for the M1. The f.t. is on <i>A</i> , <i>B</i> , <i>C</i> .] $2 - x + 8x^{2} 1 - x^{-1} 1 + 2x^{-1} 2 + x^{-1}$ [Apply this scheme to attempts to expand ()() () () () , giving M	1414141	[3]

final answer (f.t. is on A, B, C).]

5 The polynomial $ax^3 + bx^2 + 5x - 2$, where *a* and *b* are constants, is denoted by p(x). It is given that (2x - 1) is a factor of p(x) and that when p(x) is divided by (x - 2) the remainder is 12.

[5]

(ii) When *a* and *b* have these values, find the quadratic factor of p(x). [2]

(i) Substitute $x = \frac{1}{2}$ and equate to zero, or divide, and obtain a correct equation, e.g. 5 $\frac{1}{8}a + \frac{1}{4}b + \frac{5}{2} - 2 = 0$ B1 Substitute x = 2 and equate result to 12, or divide and equate constant remainder to 12 M1 Obtain a correct equation, e.g. 8a + 4b + 10 - 2 = 12A1 Solve for *a* or for *b* M1 Obtain a = 2 and b = -3A1 [5] (ii) Attempt division by 2x - 1 reaching a partial quotient $\frac{1}{2}ax^2 + kx$ M1 Obtain quadratic factor $x^2 - x + 2$ A1 [2] [The M1 is earned if inspection has an unknown factor $Ax^2 + Bx + 2$ and an equation in A and/or *B*, or an unknown factor of $\frac{1}{2}ax^2 + Bx + C$ and an equation in *B* and/or *C*.]

6 The polynomial p(x) is defined by

$$p(x) = ax^3 - x^2 + 4x - a,$$

where *a* is a constant. It is given that (2x - 1) is a factor of p(x).

- (i) Find the value of a and hence factorise p(x).
- (ii) When *a* has the value found in part (i), express $\frac{8x-13}{p(x)}$ in partial fractions. [5]

[4]

6	(i)	Substitute $x = \frac{1}{2}$ and equate to zero		
		or divide by $(2x-1)$, reach $\frac{a}{2}x^2 + kx + \dots$ and equate remainder to zero		
		or by inspection reach $\frac{a}{2}x^2 + bx + c$ and an equation in b/c		
		or by inspection reach $Ax^2 + Bx + a$ and an equation in A/B	M1	
		Obtain $a = 2$	A1	
		Attempt to find quadratic factor by division or inspection or equivalent	M1	
		Obtain $(2x - 1)(x^2 + 2)$	A1cwo	[4]
	(ii)	State or imply form $\frac{A}{2x-1} + \frac{Bx+C}{x^2+2}$, following factors from part (i)	B1√	
		Use relevant method to find a constant	M1	
		Obtain $A = -4$, following factors from part (i)	A1√	
		Obtain $B = 2$	A1	
		Obtain $C = 5$	A1	

7 Expand $\frac{1}{(2+x)^3}$ in ascending powers of x, up to and including the term in x^2 , simplifying the coefficients. [4]

:	Obtain correct unsimplified version of the x or x^2 term in the	
	expansion of $(2 + x)^{-3}$ or $(1 + \frac{1}{2}x)^{-3}$	M1
	State correct first term $\frac{1}{8}$	B1
	Obtain next two terms $-\frac{3}{16}x + \frac{3}{16}x^2$	A1 + A1
	[The M mark is not earned by versions with unexpanded binomial	
	coefficients such as $\begin{pmatrix} -3\\ 1 \end{pmatrix}$.]	
	[Accept exact decimal equivalents of fractions.]	
	[SR: Answers given as $\frac{1}{8}\left(1-\frac{3}{2}x+\frac{3}{2}x^2\right)$ can earn M1B1A1.]	
	[SR: Solutions involving $k\left(1+\frac{1}{2}x\right)^{-3}$, where $k = 2, 8 \text{ or } \frac{1}{2}$, can earn	
	M1 and A1 $$ for correctly simplifying both the terms in x and x ² .]	

8 Solve the equation

$$5^{x-1} = 5^x - 5$$

giving your answer correct to 3 significant figures.

Use laws of indices correctly and solve for 5^x or for 5^{-x} or for 5^{x-1} $\frac{5}{1-1}$	M1
Obtain 5^x or for 5^{-x} or for 5^{x-1} in any correct form, e.g. $5^x =$	A1
Use correct method for solving $5^x = a$, or $5^{-x} = a$, or $5^{x-1} = a$, where $a \ge 0$	M1
Obtain answer $x = 1.14$	A1

- 9 The variables x and y satisfy the equation $y^3 = Ae^{2x}$, where A is a constant. The graph of ln y against x is a straight line.
 - (i) Find the gradient of this line.
 - (ii) Given that the line intersects the axis of $\ln y$ at the point where $\ln y = 0.5$, find the value of A correct to 2 decimal places. [2]

(i)	State or imply $3 \ln y = \ln A + 2x$ at any stage	B1	
	State gradient is $\frac{2}{3}$, or equivalent	B1	[2]
(ii)	Substitute $x = 0$, ln $y = 0.5$ and solve for A Obtain $A = 4.48$	M1 A1	[2]

[4]

[2]

State or imply $2 + e^{-x} = e^2$	B1	
Carry out method for finding $\pm x$ from $e^{-x} = k$, where $k > 0$, following sound in		
or exp work	M1	
Obtain $x = -\ln(e^2 - 2)$, or equivalent expression for x	A1	
Obtain answer $x = -1.68$	A1	4
[The answer must be given to 2 decimal places]		
[SR: the M1 is available for attempts starting with $2 + e^{-x} = 10^2$]		

- 11 It is given that $\tan 3x = k \tan x$, where k is a constant and $\tan x \neq 0$.
 - (i) By first expanding tan(2x + x), show that

$$(3k-1)\tan^2 x = k - 3.$$
 [4]

- (ii) Hence solve the equation $\tan 3x = k \tan x$ when k = 4, giving all solutions in the interval $0^{\circ} < x < 180^{\circ}$. [3]
- (iii) Show that the equation $\tan 3x = k \tan x$ has no root in the interval $0^{\circ} < x < 180^{\circ}$ when k = 2. [1]

11	(i)	Use $\tan (A + B)$ and $\tan 2A$ formulae to obtain an equation in $\tan x$ Obtain a correct equation in $\tan x$ in any form Obtain an expression of the form $a \tan^2 x = b$ Obtain the given answer	M1 A1 M1 A1	[4]
	(ii)	Substitute $k = 4$ in the given expression and solve for x Obtain answer, e.g. $x = 16.8^{\circ}$ Obtain second answer, e.g. $x = 163.2^{\circ}$, and no others in the given interval [Ignore answers outside the given interval. Treat answers in radians as a misread and deduct A1 from the marks for the angles.]	M1 A1 A1	[3]
	(iii)	Substitute $k = 2$, show $\tan^2 x < 0$ and justify given statement correctly	B1	[1]

12 (i) By first expanding $\sin(2\theta + \theta)$, show that

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta.$$
 [4]

- (ii) Show that, after making the substitution $x = \frac{2 \sin \theta}{\sqrt{3}}$, the equation $x^3 x + \frac{1}{6}\sqrt{3} = 0$ can be written in the form $\sin 3\theta = \frac{3}{4}$. [1]
- (iii) Hence solve the equation

$$x^3 - x + \frac{1}{6}\sqrt{3} = 0$$

giving your answers correct to 3 significant figures.

12	(i)	Use $\sin(A + B)$ formula to express $\sin 3\theta$ in terms of trig. functions of 2θ and θ Use correct double angle formulae and Pythagoras to express $\sin 3\theta$ in terms of a Obtain a correct expression in terms of $\sin\theta$ in any form Obtain the given identity [SR: Give M1 for using correct formulae to express RHS in terms of $\sin\theta$ and co then M1A1 for expressing in terms of $\sin\theta$ and $\sin 3\theta$ only, or in terms of $\cos\theta$, $\sin\theta$, $\cos 2\theta$ and $\sin 2\theta$, then A1 for obtaining the given identity.]	$ \sin\theta \qquad M1 \\ A1 \\ A1 \\ os2\theta, $	[4]
	(ii)	Substitute for <i>x</i> and obtain the given answer	B1	[1]
	(iii)	Carry out a correct method to find a value of x Obtain answers 0.322, 0.799, -1.12 [Solutions with more than 3 answers can only earn a maximum of A1 + A1.]	M1 A1 + A1 + A1	[4]

13 The angles A and B are such that

$$\sin(A + 45^{\circ}) = (2\sqrt{2})\cos A$$
 and $4\sec^2 B + 5 = 12\tan B$.

Without using a calculator, find the exact value of tan(A - B).

State or imply $\sin A \times \cos 45 + \cos A \times \sin 45 = 2\sqrt{2} \cos A$ **B1** Divide by $\cos A$ to find value of $\tan A$ **M1** Obtain $\tan A = 3$ A1 Use identity $\sec^2 B = 1 + \tan^2 B$ **B1** Solve three-term quadratic equation and find $\tan B$ **M1** Obtain $\tan B = \frac{3}{2}$ only **A1** Substitute **numerical values** in $\frac{\tan A - \tan B}{1 + \tan A \tan B}$ **M1** Obtain $\frac{3}{11}$ A1 [8]

[4]

[8]

EITHER	Make relevant use of the correct sin 2A formula Make relevant use of the correct cos 2A formula Derive the given result correctly	M1 M1 A1
OR	Make relevant use of the tan 2A formula Make relevant use of $1 + \tan^2 A = \sec^2 A$ or $\cos^2 A + \sin^2 A = 1$ Derive the given result correctly	M1 M1 A1

 $\cot x - \cot 2x \equiv \csc 2x.$

15 Solve the equation

 $\cos\theta + 3\cos 2\theta = 2,$

giving all solutions in the interval $0^{\circ} \leq \theta \leq 180^{\circ}$.

in an
M1
A1
M1
A1
A1

- 16 (i) Express $7 \cos \theta + 24 \sin \theta$ in the form $R \cos(\theta \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$, giving the exact value of R and the value of α correct to 2 decimal places. [3]
 - (ii) Hence solve the equation

 $7\cos\theta + 24\sin\theta = 15$,

giving all solutions in the interval $0^{\circ} \le \theta \le 360^{\circ}$.

(i)	State answer $R = 25$	B1
	Use trig formula to find α	M1
	Obtain $\alpha = 73.74^{\circ}$	A1 3
(iii)	Carry out evaluation of cos ⁻¹ (15/25) (= 53.1301°)	MI
	Obtain answer 126.9° Carry out correct method for second answer	A1 MI
Obtain answer 20.6° and no others in the range [Ignore answers outside the given range.]		A1,* 4

[3]

[4]