Midterm Exam Practise Paper

1 Solve the inequality $2-3 x<|x-3|$.

1 EITHER: State or imply non-modular inequality $(2-3 x)^{2}<(x-3)^{2}$, or corresponding equation, and make a reasonable solution attempt at a 3-term quadratic M1
Obtain critical value $x=-\frac{1}{2} \quad$ A1
Obtain $x>-\frac{1}{2} \quad$ A1
Fully justify $x>-\frac{1}{2}$ as only answer A1
OR1: State the relevant critical linear equation, i.e. $2-3 x=3-x \quad$ B1
$\begin{array}{ll}\text { Obtain critical value } x=-\frac{1}{2} & \text { B1 }\end{array}$
$\begin{array}{ll}\text { Obtain } x>-\frac{1}{2} & \text { B1 }\end{array}$
$\begin{array}{ll}\text { Fully justify } x>-\frac{1}{2} \text { as only answer } & \text { B1 }\end{array}$
OR2: Obtain the critical value $x=-\frac{1}{2}$ by inspection, or by solving a linear inequality \quad B2
$\begin{array}{ll}\text { Obtain } x>-\frac{1}{2} & \text { B1 }\end{array}$
Fully justify $x>-\frac{1}{2}$ as only answer B1

2 The polynomial $2 x^{3}+a x^{2}-4$ is denoted by $\mathrm{p}(x)$. It is given that $(x-2)$ is a factor of $\mathrm{p}(x)$.
(i) Find the value of a.

When a has this value,
(ii) factorise $\mathrm{p}(x)$,
(iii) solve the inequality $\mathrm{p}(x)>0$, justifying your answer.

2 (i) Substitute 2 for x and equate to zero, or divide by $x-2$ and equate remainder to zero
Obtain answer $a=-3$
(ii) Attempt to find quadratic factor by division or inspection M1

State quadratic factor $2 x^{2}+x+2$ A1
[The M1 is earned if division reaches a partial quotient of $2 x^{2}+k x$, or if inspection has an unknown factor of $2 x^{2}+b x+c$ and an equation in b and/or c, or if two coefficients with the correct moduli are stated without working.]
(iii) State answer $x>2$ (and nothing else)

Make a correct justification e.g. $2 x^{2}+x+2$ (has no zeros and) is always positive remaining work is correct.]

3 When $(1+2 x)(1+a x)^{\frac{2}{3}}$, where a is a constant, is expanded in ascending powers of x, the coefficient of the term in x is zero.
(i) Find the value of a.
(ii) When a has this value, find the term in x^{3} in the expansion of $(1+2 x)(1+a x)^{\frac{2}{3}}$, simplifying the coefficient.

3 (i) State correct first two terms of the expansion of $(1+a x)^{\frac{2}{3}}$, i.e. $1+\frac{2}{3} a x \quad$ B1
Form an expression for the coefficient of x in the expansion of $(1+2 x)(1+a x)^{\frac{2}{3}}$ and equate it to zero
Obtain $a=-3$
A1
(ii) Obtain correct unsimplified terms in x^{2} and x^{3} in the expansion of $(1-3 x)^{\frac{2}{3}}$
or $(1+a x)^{\frac{2}{3}}$
$B 1 \sqrt{ }+B 1 \sqrt{ }$
Carry out multiplication by $1+2 x$ obtaining two terms in x^{3}
Obtain final answer $-\frac{10}{3} x^{3}$, or equivalent
A1
[Symbolic binomial coefficients, e.g. $\binom{\frac{2}{3}}{1}$, are not acceptable for the B marks in (i) or (ii)]
4 (i) Express $\frac{2-x+8 x^{2}}{(1-x)(1+2 x)(2+x)}$ in partial fractions.
(ii) Hence obtain the expansion of $\frac{2-x+8 x^{2}}{(1-x)(1+2 x)(2+x)}$ in ascending powers of x, up to and including the term in x^{2}.

4 (i) State or imply the form $\frac{A}{1-x}+\frac{B}{1+2 x}+\frac{C}{2+x} \quad$ B1
Use any relevant method to determine a constant M1
Obtain $A=1, B=2$ and $C=-4$
$\mathrm{A} 1+\mathrm{A} 1+\mathrm{A} 1$
(ii) Use correct method to obtain the first two terms of the expansion of $(1-x)^{-1},(1+2 x)^{-1},(2+x)^{-1}$,
or $\left(1+\frac{1}{2} x\right)^{-1}$
Obtain complete unsimplified expansions up to x^{2} of each partial fraction $\mathrm{A} 1 \sqrt{ }+\mathrm{A} 1 \sqrt{ }+\mathrm{A} 1 \sqrt{ }$
Combine expansions and obtain answer $1-2 x+\frac{17}{2} x^{2}$
[Binomial coefficients such as $\binom{-1}{2}$ are not sufficient for the M1. The f.t. is on A, B, C.]

$$
2-x+8 x^{2} \quad 1-x^{-1} 1+2 x^{-1} 2+x^{-1}
$$

[Apply this scheme to attempts to expand () () () () , giving M1A1A1A1
for the expansions, and A1 for the final answer.]
[Allow Maclaurin, giving M1A1 $\sqrt{ } 1 \sqrt{ }$ for $f(0)=1$ and $f^{\prime}(0)=-2, A 1 \sqrt{ }$ for $f^{\prime \prime}(0)=17$ and A1 for the final answer (f.t. is on A, B, C).]

5 The polynomial $a x^{3}+b x^{2}+5 x-2$, where a and b are constants, is denoted by $\mathrm{p}(x)$. It is given that $(2 x-1)$ is a factor of $\mathrm{p}(x)$ and that when $\mathrm{p}(x)$ is divided by $(x-2)$ the remainder is 12 .
(i) Find the values of a and b.
(ii) When a and b have these values, find the quadratic factor of $\mathrm{p}(x)$.

5 (i) Substitute $x=\frac{1}{2}$ and equate to zero, or divide, and obtain a correct equation, e.g. $\frac{1}{8} a+\frac{1}{4} b+\frac{5}{2}-2=0$
Substitute $x=2$ and equate result to 12 , or divide and equate constant remainder to 12 M1
Obtain a correct equation, e.g. $8 a+4 b+10-2=12 \quad$ A1
Solve for a or for $b \quad$ M1
Obtain $a=2$ and $b=-3 \quad$ A1
(ii) Attempt division by $2 x-1$ reaching a partial quotient $\frac{1}{2} a x^{2}+k x \quad$ M1 Obtain quadratic factor $x^{2}-x+2$
[The M1 is earned if inspection has an unknown factor $A x^{2}+B x+2$ and an equation in A and/or B, or an unknown factor of $\frac{1}{2} a x^{2}+B x+C$ and an equation in B and/or C.]

6 The polynomial $\mathrm{p}(x)$ is defined by

$$
\mathrm{p}(x)=a x^{3}-x^{2}+4 x-a
$$

where a is a constant. It is given that $(2 x-1)$ is a factor of $\mathrm{p}(x)$.
(i) Find the value of a and hence factorise $\mathrm{p}(x)$.
(ii) When a has the value found in part (i), express $\frac{8 x-13}{\mathrm{p}(x)}$ in partial fractions.
(i) Substitute $x=\frac{1}{2}$ and equate to zero or divide by $(2 x-1)$, reach $\frac{a}{2} x^{2}+k x+\ldots$ and equate remainder to zero or by inspection reach $\frac{a}{2} x^{2}+b x+\mathrm{c}$ and an equation in b / c or by inspection reach $A x^{2}+B x+a$ and an equation in A / B

Obtain $a=2$
Attempt to find quadratic factor by division or inspection or equivalent
(ii) State or imply form $\frac{A}{2 x-1}+\frac{B x+C}{x^{2}+2}$, following factors from part (i)

Obtain $A=-4$, following factors from part (i)
Obtain $B=2$
Obtain $\mathrm{C}=5$

7 Expand $\frac{1}{(2+x)^{3}}$ in ascending powers of x, up to and including the term in x^{2}, simplifying the coefficients.
: Obtain correct unsimplified version of the x or x^{2} term in the expansion of $(2+x)^{-3}$ or $\left(1+\frac{1}{2} x\right)^{-3}$
State correct first term $\frac{1}{8}$ B1

Obtain next two terms $-\frac{3}{16} x+\frac{3}{16} x^{2}$ A1 + A1
[The M mark is not earned by versions with unexpanded binomial coefficients such as $\binom{-3}{1}$.]
[Accept exact decimal equivalents of fractions.]
[SR: Answers given as $\frac{1}{8}\left(1-\frac{3}{2} x+\frac{3}{2} x^{2}\right)$ can earn M1B1A1.]
[SR: Solutions involving $k\left(1+\frac{1}{2} x\right)^{-3}$, where $k=2$, 8 or $\frac{1}{2}$, can earn M 1 and $\mathrm{A} 1 \sqrt{ }$ for correctly simplifying both the terms in x and x^{2}.]

8 Solve the equation

$$
5^{x-1}=5^{x}-5
$$

giving your answer correct to 3 significant figures.

Use laws of indices correctly and solve for 5^{x} or for 5^{-x} or for 5^{x-1}

$$
\frac{5}{1-1 / 5}
$$

Obtain 5^{x} or for 5^{-x} or for 5^{x-1} in any correct form, e.g. $5^{x}=$
Use correct method for solving $5^{x}=\mathrm{a}$, or $5^{-x}=\mathrm{a}$, or $5^{x-1}=\mathrm{a}$, where a >0
Obtain answer $x=1.14$
$9 \quad$ The variables x and y satisfy the equation $y^{3}=A \mathrm{e}^{2 x}$, where A is a constant. The graph of $\ln y$ against x is a straight line.
(i) Find the gradient of this line.
(ii) Given that the line intersects the axis of $\ln y$ at the point where $\ln y=0.5$, find the value of A correct to 2 decimal places.
(i) State or imply $3 \ln y=\ln A+2 x$ at any stage \quad B1

State gradient is $\frac{2}{3}$, or equivalent B1
(ii) Substitute $x=0, \ln y=0.5$ and solve for A M1
Obtain $A=4.48$ A1

10 Solve the equation $\ln \left(2+\mathrm{e}^{-x}\right)=2$, giving your answer correct to 2 decimal places.

State or imply $2+\mathrm{e}^{-x}=\mathrm{e}^{2} \quad$ B1
Carry out method for finding $\pm x$ from $\mathrm{e}^{ \pm x}=k$, where $k>0$, following sound \ln or \exp work
Obtain $x=-\ln \left(\mathrm{e}^{2}-2\right)$, or equivalent expression for x A1
Obtain answer $x=-1.68 \quad$ A1
[The answer must be given to 2 decimal places]
[SR: the M1 is available for attempts starting with $2+\mathrm{e}^{-x}=10^{2}$]

11 It is given that $\tan 3 x=k \tan x$, where k is a constant and $\tan x \neq 0$.
(i) By first expanding $\tan (2 x+x)$, show that

$$
\begin{equation*}
(3 k-1) \tan ^{2} x=k-3 \tag{4}
\end{equation*}
$$

(ii) Hence solve the equation $\tan 3 x=k \tan x$ when $k=4$, giving all solutions in the interval $0^{\circ}<x<180^{\circ}$.
(iii) Show that the equation $\tan 3 x=k \tan x$ has no root in the interval $0^{\circ}<x<180^{\circ}$ when $k=2$.

11 (i) Use $\tan (A+B)$ and $\tan 2 A$ formulae to obtain an equation in $\tan x \quad$ M1
Obtain a correct equation in $\tan x$ in any form
Obtain an expression of the form $a \tan ^{2} x=b \quad$ M1
Obtain the given answer A1
(ii) Substitute $k=4$ in the given expression and solve for $x \quad$ M1

Obtain answer, e.g. $x=16.8^{\circ}$
Obtain second answer, e.g. $x=163.2^{\circ}$, and no others in the given interval A1
[Ignore answers outside the given interval. Treat answers in radians as a misread and deduct A1 from the marks for the angles.]
(iii) Substitute $k=2$, show $\tan ^{2} x<0$ and justify given statement correctly

12 (i) By first expanding $\sin (2 \theta+\theta)$, show that

$$
\begin{equation*}
\sin 3 \theta=3 \sin \theta-4 \sin ^{3} \theta \tag{4}
\end{equation*}
$$

(ii) Show that, after making the substitution $x=\frac{2 \sin \theta}{\sqrt{3}}$, the equation $x^{3}-x+\frac{1}{6} \sqrt{3}=0$ can be written in the form $\sin 3 \theta=\frac{3}{4}$.
(iii) Hence solve the equation

$$
x^{3}-x+\frac{1}{6} \sqrt{ } 3=0
$$

giving your answers correct to 3 significant figures.
12 (i) Use $\sin (A+B)$ formula to express $\sin 3 \theta$ in terms of trig. functions of 2θ and θ M1
Use correct double angle formulae and Pythagoras to express $\sin 3 \theta$ in terms of $\sin \theta$ M1
Obtain a correct expression in terms of $\sin \theta$ in any form A1
Obtain the given identity A1[SR: Give M1 for using correct formulae to express RHS in terms of $\sin \theta$ and $\cos 2 \theta$,then M1A1 for expressing in terms of $\sin \theta$ and $\sin 3 \theta$ only, or in termsof $\cos \theta, \sin \theta, \cos 2 \theta$ and $\sin 2 \theta$, then A 1 for obtaining the given identity.]
(ii) Substitute for x and obtain the given answer B1
(iii) Carry out a correct method to find a value of x M1Obtain answers $0.322,0.799,-1.12$$\mathrm{A} 1+\mathrm{A} 1+\mathrm{A} 1$[Solutions with more than 3 answers can only earn a maximum of A1 + A1.]

13 The angles A and B are such that

$$
\sin \left(A+45^{\circ}\right)=(2 \sqrt{ } 2) \cos A \quad \text { and } \quad 4 \sec ^{2} B+5=12 \tan B
$$

Without using a calculator, find the exact value of $\tan (A-B)$.
State or imply $\sin A \times \cos 45+\cos A \times \sin 45=2 \sqrt{2} \cos A$ B1
Divide by $\cos A$ to find value of $\tan A$ M1
Obtain $\tan A=3$ A1
Use identity $\sec ^{2} B=1+\tan ^{2} B$ B1
Solve three-term quadratic equation and find $\tan B$ M1
Obtain $\tan B=\frac{3}{2}$ only A1
Substitute numerical values in $\frac{\tan A-\tan B}{1+\tan A \tan B}$ M1
Obtain $\frac{3}{11}$ A1

$$
\cot x-\cot 2 x \equiv \operatorname{cosec} 2 x .
$$

EITHER Make relevant use of the correct $\sin 2 A$ formula M1
Make relevant use of the correct $\cos 2 A$ formula M1
Derive the given result correctly A1
OR Make relevant use of the $\tan 2 A$ formula M1
Make relevant use of $1+\tan ^{2} A=\sec ^{2} A$ or $\cos ^{2} A+\sin ^{2} A=1$ M1
Derive the given result correctly A1

15 Solve the equation

$$
\cos \theta+3 \cos 2 \theta=2
$$

giving all solutions in the interval $0^{\circ} \leqslant \theta \leqslant 180^{\circ}$.
Use correct $\cos 2 A$ formula, or equivalent pair of correct formulas, to obtain an equation in $\cos \theta$ M1
Obtain 3-term quadratic $6 \cos ^{2} \theta+\cos \theta-5=0$, or equivalent A1
Attempt to solve quadratic and reach $\theta=\cos ^{-1}(a)$ M1
Obtain answer 33.6° (or 33.5°) or 0.586 (or 0.585) radians A1
Obtain answer 180° or π (or 3.14) radians and no others in range A1

16 (i) Express $7 \cos \theta+24 \sin \theta$ in the form $R \cos (\theta-\alpha)$, where $R>0$ and $0^{\circ}<\alpha<90^{\circ}$, giving the exact value of R and the value of α correct to 2 decimal places.
(ii) Hence solve the equation

$$
7 \cos \theta+24 \sin \theta=15
$$

giving all solutions in the interval $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$.
(i) State answer $R=25$

Use trig formula to find a
Obtain $a=73.74^{\circ}$
(ii) Carry out evaluation of $\cos ^{-1}(15 / 25) \quad\left(=53.1301 \ldots{ }^{\circ}\right)$[Ignore answers outside the given range.]

